Letzte Aktualisierung: 25.06.2010

Anzeige

Nachhaltige Herstellung von Wasserstoff durch photokatalytische Wasserspaltung

Als Energieträger der Zukunft müsste Wasserstoff nachhaltig mit insbesondere Solarenergie produziert werden. Wie Wasserstoff durch eine photokatalytische Wasserspaltung hergestellt werden kann, steht jetzt im Mittelpunkt des dreitägigen Symposiums "Catalysis and Photochemistry for Energy Technologies" in Rostock.

Anzeige
Nachhaltige Herstellung von Wasserstoff durch photokatalytische Wasserspaltung_Foto_Heinz Hasselberg_aboutpixel

Nachhaltige Herstellung von Wasserstoff durch photokatalytische Wasserspaltung (Foto: Heinz Hasselberg - aboutpixel)

Am 29. Juni beginnt in Rostock das Symposium "Catalysis and Photochemistry for Energy Technologies". Im Mittelpunkt dieser dreitägigen, von der Fachgruppe Nachhaltige Chemie der Gesellschaft Deutscher Chemiker (GDCh) organisierten Veranstaltung stehen die Wasserstofftechnologie und die Solarenergienutzung. Insbesondere die nachhaltige Herstellung von Wasserstoff durch eine photokatalytische Wasserspaltung ist Thema des Symposiums.

Wasserstoff gilt für viele als der wichtigste Energieträger der Zukunft; er soll "saubere" Energie liefern. Z. Zt. fällt er hauptsächlich durch Dampfreformierung von Kohlenwasserstoffen wie Methan an und wird vor allem chemisch genutzt. Als Energieträger der Zukunft müsste er nach den Prinzipien der Nachhaltigkeit produziert werden, und hier gilt die photokatalytische Wasserspaltung als eine vielversprechende Option. Dafür kommen beispielsweise Metalloxid- oder Metallsulfid-Katalysatoren infrage, die Licht bestimmter Wellenlängen absorbieren. Sie werden in bis zur Nanogröße pulverisierter Form eingesetzt. Ihre Kristallinität und ihre Dotierung mit Fremdatomen sind für ihr Absorptionsvermögen und ihre katalytische Aktivität von entscheidender Bedeutung, und auch der pH-Wert des Reaktionsgemisches will richtig eingestellt sein. Wenn auch diese Verfahren noch nicht praxistauglich sind, die Forschungsergebnisse machen immer zuversichtlicher, wie Professor Dr. Akihiko Kudo vom Department für Angewandte Chemie der Universität der Wissenschaften, Tokio, in Rostock zu berichten weiß.

Professor Dr. Matthias Drieß, Metallorganiker und Materialforscher am Institut für Chemie der Technischen Universität Berlin, will in Rostock die Notwendigkeit interdisziplinärer Zusammenarbeit am Beispiel der Tageslicht-getriebenen Wasserspaltung darstellen. "Die Photosynthese der Pflanzen ist ein biokatalytischer Prozess, bei dem die Wasserspaltung von zentraler Bedeutung ist, damit die Pflanze Sauerstoff produzieren kann, und die Aufklärung der Wasser-Oxidation und -Reduktion in der Pflanze ist für viele Forscher in unterschiedlichen Disziplinen der molekularen Wissenschaften von zentralem Interesse." Im Exzellenzcluster "Unifying Concepts in Catalysis" (UniCat) in Berlin befasst man sich nicht nur mit dieser Aufgabenstellung und neuen Biokatalysatoren für die Bio-Wasserstoffproduktion und Bio-Brennstoffzellen, sondern auch mit der bioinspirierten Katalyse der Sauerstoff- und Wasserstoffbildung über einen nicht-biologischen Ansatz mit neuen anorganischen Materialien, also mit der künstlichen Solarenergie-getrieben Wasserspaltung.

Dasselbe Ziel, die Spaltung von Wasser in Wasserstoff und Sauerstoff nachhaltig mit sichtbarem Licht zu betreiben, verfolgt eine Arbeitsgruppe um Professor Dr. Licheng Sun vom Department für Chemie am Royal Institute of Technology im schwedischen Stockholm. Inspiriert von der Struktur und Funktionsweise des Sauerstoff-bildenden Komplexes im Photosystem II der Pflanzen, synthetisieren die Wissenschaftler Ruthenium-Komplexe der unterschiedlichsten Art, von denen sich einige als sehr effiziente Katalysatoren für die Wasseroxidation sowohl mit Licht als auch mit chemischen Oxidationsmitteln herausstellten. Das Forschungsfeld der metallorganischen Komplexchemie lässt für die nächsten Jahre interessante Ergebnisse bei der artifiziellen, bioinspirierten Wasserspaltung erwarten.

Auch am Leibniz-Institut für Katalyse (LIKAT) in Rostock befasst man sich mit dieser aktuellen Problemstellung und versucht, mehr Licht ins Dunkel der beiden Halbreaktionen Wasseroxidation und Wasserreduktion zu bekommen. Dafür setzt man im Forschungsbereich von Beller Opferreagenzien (Stoffe, die irreversibel reagieren) als Elektronendonatoren oder Elektronenakzeptoren ein. Dr. Henrik Junge, Themenleiter "Katalyse für Energietechnologien", berichtet, wie es gelang, in wässriger Phase vorliegende Protonen mit Hilfe von Lichtsensibilisatoren auf Iridiumbasis sowie Eisencarbonylen als Reduktionskatalysatoren und Triethylaminen als Opferreagenzien zu Wasserstoff zu reduzieren.

Sie haben eine Frage zu diesem Artikel? Wir sollten auch Ihre News bei uns veröffentlichen? Schreiben Sie uns unkompliziert eine Email an unsere Redaktion unter info[at]energie-experten.org

Holzheizung

Kostenlose Angebote für eine Holzheizung anfordern!

Kostenlose Angebote anfordern:

Das könnte Sie auch interessieren:

  • Heizung planen

    Mit unserem Heizungsplaner ermitteln Sie einfach online ein Heizungskonzept, das Ihre Heizwärmeanforderungen am Besten erfüllt. Dabei richtet sich die…

    Heizung planen
  • Solarrechner

    Mit unserem Online-Solarrechner können Sie sofort prüfen, ob sich Ihr Dach für eine Photovoltaik-Anlage technisch eignet und finanziell lohnt. Mit nur wenigen…

    Solarrechner
  • Dämmung berechnen

    Mit unserer Online-App "Dämmkostenrechner" ermitteln Sie in wenigen Schritten einfach & unkompliziert, welche Dämmung in welcher Dicke wie viel kostet, was sie…

    Dämmung berechnen